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A Programme for the Geometrical Reconstruction

of Curved Tracks in a Bubble Chamber

by

W.G. Moorhead

Introduction

The input part of the Mercury Programme for the recon-
struction of curved tracks in bubble chambers is described in
CERN 60~ 11 "An input programme for measurements of track chamber
photographs” by G.R. Macleod. There it is described how the IEP
measurements together with their identifying labels are 1nput and
stored in the computer; also the,other geometrical information

necessary for the reconstruction of tracks.,

Bubble chamber tracks are expected to be helices in first
approximation, representing the motion of a charged particle in a

quasi-uniform magnetic field perpendicular to the front glass.

' Measurements are taken serially on each stereoscopic view, therefore

usually not corresponding to single points in space.

The present report glves a deecrlptlon of the sequence of

calculations for the geometrlcal reconstruotlon of each measured

“event following the input to the computer of the necessary infor-

mation by the Input Programme. It also includes a specification
of the conventions and limitations imposed on the input data by the
geemetrical reconstruction programme and the meaning of the numbers

output as results.

*) IEP (Instrument for the Evaluation of Photographs) is the
term used to designate the CERN photograph measuring
instruments for which the programme has been primarily
written.



Notation

It has been attempted - not always successfully - to use
a consistent notation. Nearly all terms have been explained when
they are first used, except those such as !'label!, 'title!, etc.,
which are already defined in CERN 60 - 11, Usually measurement has
been used meaning an IEP measurement pair, and point meaning a point

in the chamber measured with a label of type AA.

The subscript i has been used to indicate that thé quantity
S0 subscripted is taken over the whole view, The subscript (or
occasionally superscript) j is used to indicate that the quantity so
subscripted is taken over all the views. If both i and j occur

together the quantity is taken over the whole view on every view,

Exceptions such as the use of i in the appendices should be
obvious from the context. Sometimes the subscripts are dropped to

make the equations less cumbersome.

Most of the symbols used are defined by figures (iv) or (iii).

Important general conventions are

(xyz) refer to co-ordinates in the chamber reference

-

system

(XY) refer to the IEP measurements on the photo

(in fringes).
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General Description

The geometrioal reconstruction programme will be called
the geometry programme. It may be regarded as being entirely
self-contained, except that it expects to find information stored
in the computer by the input programme, It could, of course, be
used with any input programme which places the same informatioﬁ in
the same places in the computer, and which has the same links with
the geometry programme. These links between the input and geometry

progremmes are shown in Fig, (i).

v The geometry programme is entered (1) when title 1 has
been read in and (2) when title 3-and the measurements of -one event

have been read in and stored. At (1) some general calculations

required for all succeeding events are performed, ‘and control returned

to the input programme to read title 2 etc. At (2) the event is
reconstructed and the results or a fault number output, and contro]

returned to the input to read in the next event.

Computation at the end of title 1

After title 1, the calculation of some quantities which
are required for every event is performed. '
2.1 The sines and cosines (sin @_, cos 0,,) of angles of lines
joining cameras are found. grs is the angle which the line: joining

the lensés of the cameras r, s in the xy plane makes with the X-~axis,

2.2 The apparent positions (F G ) on the back of the front
glass of all fiducial marks, front and baok, are found, by the method
of appendix I, These co-ordinates serve as the reference frame for

the reconstruction of each event.
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3, Computation for each event

When all the measurements and labels for the event have
been read in the computation proceeds as in the flow diagram of
Fig. (ii).  The co-ordinate system is shown in Fig. (iv). The
Z = O-plane is the back of the front glass. 7z is positive towards
the cameras, and therefore, of course, negative in the chamber,

The optical axis of each camera lens must be perpendicular to the
front glass though the cameras may be at different distances from
the glass.,

3.1 Coefficients of transformation to_the back of the front glass

For each view in turn, the transformation coefficients
o aré found which relate the IEP measurements on that view to their
apparent measurements on the back of the front glass, For this
purpose the IEP measurements (Fi Gi) of the fiducial marks are sub=

stituted in the transformation equations

I'4
Fi = al+-a2Fii-a3Gi

: (1)
Gi = a4-ka5Fi +oc6Gi ,

where Fi'Gifare the apparent fiducial mark co-ordinates found in 2,2,

If there are at least four fiducial marks measured, as the
programme requires that there must be, Egs. (1) can each be solved
by least squares‘to yield the amj for the view j, A check is also
made by back substitution of the results that the fiducial marks were

measured within a set tolerance.



4. Reconstruction of points

Correspondlng points, i.e. all points measured with a
label of type AA on at least two views, have their co-ordlnates

(xyz) found.

The transformation coefficients amj found in 3.1 are
used to find the apparent co-ordinates on the back of the front
glass, i.e. the plane z= 0 and hence, by the method of Appendix I,
the coefficients of the equation of the light-rays through the

point in the chamber from the camera lenses,

We then have two equations representing such a light-

ray through the point for each view :

X = Pz -t-(}‘-J
X X
Pz +¢d (2)
= zZ +
J ¥ y

Measurements on two views are sufficient as they provide two pairs
of equations of type (2), making four equations for the three
quantities x,y,z. All measurements gi#en for the point are used
and Egs. (2) solved by least squares to give (xyz) together with

their standard errors,

If the point forms an end of a track then the event 1is
rejected if the least squares errors are %00 large as the co-ordinates
of an apex are used in the reconstruction of a track, and therefore

they must be reasonably correct.

5. Reconstruction of tracks

The fitting of a helix to a track proceeds by the stages
shown in the flow diagram (Fig., (ii)). 'The several stages are briefly
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as follows:

Check the accuracy of measurements by fitting a circle through the
mea§uremegts on'the photograph, find all the coefficients F;i,

GXiJ, FyiJ, GyiJ defining the equations of the light-rays inter-
secting the track and corresponding to measurements, find an
approximate helix using two views, find the best helix by a least
squares process using all the views and, finally, find a correction
to the helix to take account of the variation of curvature along the
“track.

5.1 (Checks and preliminary caloulations on photograph

To check the measurements<KlYl - XnYn on the photograph,
the track is first made nearly parallel to the X-axis by rotating
through an angle tan"l(Yn- Yl)/(an'Xl)' Then in the new axis system

XTYT a circle is fitted by least squares

Y, = aoﬁ-alX

0
. o+ ay (X, +‘YT2). (3)

The event is rejected if more than two points are greater
than the tolerated number of fringes away from this circle. The

point only is rejected if there is only one bad measurement on the

track.

5¢2 The coefficients in the equations

(4)

]
1§
£l
N
+
)

of each light ray through the track are found exactly as for the
points in chapter 4, i.e. the apparent co-ordinates of a measurement

as reproduced to the back of the front glass are found using the
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linear transformation coefficients o of Egs. (1), then by the
method of Appendix I, the equations of the light rays are found
using the optical constants. We then have the four coefficients
F ., G ., F_ .
xi’ "xi’ “yi
there will be at least three sets of values of these coefficients

and Gyi for each measurement pair on the track;

on each of at least two views of the track. These light rays will
be called the "reconstruction lines". In the case of the measure-
ment of tracks as distinct from the case of chapter 4 there are no

corresponding reconstruction lines on different views so that the

(xyz) of Eq. (4) cannot be found directly.

52,1 Once the coefficients of the reconstruction lines have beer
found, a check is made to see that the track has its apex point
measured on at least two views, e.g. to see if an event containing
the track AB has the point AA measured on at least two views. It
may in fact have the point AA measured on one view only or not at all.

In the former case the values of Fx’ G, ¥, Gy given by this one

x’ Ty
measurement are used, to interpolate in the values in, Gxi’ Fyi’ Gyi
of another view by the method of Appendix II to find a near corres-
ponding point to serve as a first approximate apex of the track,

In the latter case (i.e. no measurement of AA given) the first measure-

‘ment of the track on one view is used to give values of F_, GX, F_,

y
Gy for this interpolation.

5.3 First approximate helix

The next problem is to find a first approximate helix to
fit the track.

5.3.1 To this end, two views are selected as being the best ones

for seeing this particular track.

The first view chosen is that in which the track is viewed
most nearly as an orthogonal projection, i.e. that in which the
average value of (FX?-+Fy?)is smallest. This view will be called

the pivotal view,
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The second view chosen is such that the line joining the
first and second camera lenses is most nearly perpendicular to the
track, in the xy plane, The second view cannot be chosen until an
approximate direction of the track has been found for the first time
using the pivotal view. (See next section,) This second view will

be called the anti-pivotal view,

506302 The approximate co-ordinates of the apex of the track must
now be known (having been computed in chapter 4 or 5.2.1). Let
these co-ordinates be (ABC). The very first approximation to the
helix is the best circle through the intersection of all the recon-
struction lines from the pivotal view with the plane z =C. If this

helix is made to pass through (ABC) it has the equation in x and y:

(x=2)% + (7~B)% + A{(x=4) + \(y-B) = 0. (5)

This is a circle passing through (AB) and with radius %-$g2-+)?2 o

Its centre is (%(ZA-kl), %(23-%2)). X, and A, are found by least
. squares using the Eqs. (4) for x and y and putting for the very first
approximation z=_C., It is at this stage that the best anti«pivdtal

vviéw can be found in the case Wheré there are more than two cameras.

The direction of the track is now approximately known and if the

tangent at the apex makes an angle ¢ with the x-axis, and r is the-

number of the pivotal view, & is found such that (Sin.¢ Cos ers_ &os¢Sin.@rS)

gives the largesti wvalue,

Eq. (5) can now be regarded as defining a circular cylinder
with generators parallel to the z-axis. We then find where the re-
construction lines from the anti-pivotal view intersect this cylinder.

We do this by substituting Bgs. (4) in Eq. (5). This gives a quadratic

equation in z for each reconstruction line. The guadratic expressibn
in z’= (2 =0) is easier to handic. Thuc from Egs. (4):
" \_I -=I
(x-4) = P z’+ (FXC-i-GX A) = F_z +¢X
~B) = Fz'+ (FC+G_~B) = F _z'+ .
(v-B) = B o'+ (R 0+0, ~3) = o'

9363



9363

This gives a quadratic in z’ on substitution in Eq. (5)
az’“ + bz’ + ¢ =0, (6)

where

o’
[H]

(2 F_+ 2¢yFy + NF o+ Asz)

o= (BB e NB A

2’ - ~b i-/%z- 4ac
2a

(62)

where the lower numerical value is always taken and has always been

found to be satisfactory.

The helix which is being fitted to the data is

x’ :=:,0(Cos & - 1) (72)
y' = pSin (7v)
z/ = p 6 tan « (Te)

where the (x'y’z’) axis system is the original (xyz) axis system
rotated through an angle B about the z-axis and moved to a new origin
(ABC), 'p! is the radius of the cylinder on which the helix lies and

o is the dip angle (see Fig. iv).

The first approximation to the helix so far has been to put

tan a = 0
o =% ,\i2 + 2,2

-1

o As
B = ten™t (X) 7

(8)
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Where}\1 and A? have been found from Eq. (5). The third of Egs..(8)
comes from the fact that B is the angle which the radius to the curve

at the apex (ABC) makes with the z-axis. It is thus given by

B = tan~ T SB_%QB-}\Z)% - tan~! %) . (9)

(ETTCETR)

Similarly

1 V5= 3(2B-Ay)
Xi-%(ZA-Al) ’

(p+#8) = tan

(92)

where (Xi ys Zi) is another point on the helix with parameter ei in

Egs, (7),

Thus, for each measurement on the anti-pivotal view we can

find zi'using Eq. (6), we can then find x, and y; using Egs. (4) and

hence ©, from Egs. (9 and 9a). From Eq. (7c) we then have

z '
.

\=5 )

tan o =

Tan o should be the same for every measurement on the anti-pivotal

view, but of course it is not exactly and the average is taken,

The next approximation to the helix is to take this average
value of tan « in Eq. (7c). New values for / and B have to be found.
It is required then to find better walues of xi_and v to substitute
in Egs. (5).

Returning then to the pivotal view; for each measurement in
turn the original (xi,yi) can be used in Egs. (9 and 9a) to find By
This 6, is then substituted in Eq. (7e) to give a new value of (xi,yi).
Using these new values of (x,y) the Egs. (5) are solved to give the

new values of %1, and Az, which are substituted in Egs. (9 and 9a) ete.
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The iteration is then obvious, it continues until two
successive values of tan a do not differ by more than .001. The
convergence is somewhat slow and the programme has a limit of ten
iterations, If it has not converged by then the mean of the last
iterations is taken, as it has been found that the process sometimes

shows a slow oscillatory convergence,

It should be noted here that as well as finding the co-
efficients in an approximate helix, we also need for the next process
a set of values of eij the parameter in the helix, one for each
measurement i on every view j.  So far wc only have eij for the
pivotal and anti-pivotal views, For the other view(s) it is necessary
to meke some other approximation, In fact what is done is to take
the corresponding value of 8 on the pivotal view for this other vieW
and make that do. It was orlglnally intended to find the 8 values
for all oivier views as has been described for the anti-pivotal view.

But in many cases this gives imaginary roots in solving Eq. (6).“'

5¢3.3 If this 1terat10n procedure does lead to 1mag1nary SOe
roots ‘in:Bgh (6) anyway, or diverges, the points on one track image are
established by an approximate "near corresponding points'" method.

This is described in Appendix II,

5.3 4 Numerical difficulties

o " - e . — - ——

There are two places where cancellation may cause severe loss

of accuracy in the iteration to find the first approximate heiix, if it

is not taken care of,

5e3.4,1 In Egs. (9 and 9a> if 8 is very small relative to B, it may

~not be found very accurately using these equatlons. If @i is very

" small

[z, - 02 + (5, - )"

£
tan ﬁi. o

-~ (9p)
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and the value of this expression is used as the criterion for which
equations to use. If the R.H.S. of Eq. (9b) is less than .05, then
Eq. (9b) is used to evaluate (8).

5.3.4,2 In Eq. (6a) if '4a c!' is very small relative to ‘52'

cancellation may occur. A check is made and if (—==-) < ,0001 then

g

2
~ i3k ac + 1.2 - [ .ae
4 _ 74
and this approximation is taken.
56345 Under some circumstances the programme will treat a track

as straight. This means that the track is ascribed a fixed large
radius - in fact, ten times the number "maximum measurable radius"

Pmax in title 1 - and the computation will be somewhat different,

If the p . is negative, all tracks will be treated as
"straight", i.e. with (Pmax x 10) as radius. A

In 5.3.2 if p= 3/A 2+ N is greater than the Pyax » thE
radius will also subsequently be fixed for this particular track at
10 X Prax® If the label of the track has a letter beyond the Zth i
the alphabet, where 1A' is a number in title 1 miscellaneous constants

(see Chapter 6), the radius p of this track will also be fixed at
10 x Pmax*

For straight tracks the same programme is used but slightly
different courses are taken at some stages. In particular
5.3.5.1 Eq. (5) reduces to

(x - A)

—(—:'35 :
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5.3,5.2 The guadratic Egs. (6) reduce to

(Al¢x * A?ﬁy

\
'\ /\1FX + /\ZF

Z’ = -
J

5636543 The gifficulties of cancellation mentioned in 5.3.4 apply

especially to the case of 'straight' tracks.

There are now

a) for the helix, approximate values of A, tan a, B as well as the
apex co-ordinates (ABC)

b) for each measurement on the track, a value of each of ina’ GxiJ’
Fyia’ G iJ, of Eqs. (4) and an approximate value of eij the parameter
in the helix (Egs. (7)) where the corresponding reconstruction line

intersects the helix.

5¢4.1 The problem is to find small corrections to the coefficients
to the helix so that the (Xiyizi) satisfy simultaneously Egs.(4) and
at the same time Eqs. (7)} Béaring in mind the definition of the

(x'y"2") axis system

x = x' Cos B -y  Sin B + A (10a)
y = y' Cos B+ x* Sin B + B | (10b)
5 = z° +C (10¢)

Substituting Egs. [10) in Eq. (4) gives two simultaneous equations in
e .

]

fl(eij) A+ p(Cos' eij- 1)Cos B - p Sin @ij Sin B
J + -
- F (,e»eij tan a+C) - G =0

(11a)
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f2(eij) = B+ pSin eij Cos 3 - pP(Cos eij- 1)Sin B

. 3 | )
_Fﬂ_@em-mna+c)-%r_o

(11b)

Egs. (11a) will not in general be satisfied exactly for this value of
eij. The respective Newton corrections for the two equations are

£1(844) £:(05:
Ql@..)l = - -—%——El——4».and QSG..)Z = - ?-%g—;gz'
i £1°(855) i 2’ (813)

where the dashes indicate differentiation w.r.t. ©. But Eq. (113)
and Eq. (11b) must be satisfied simultaneously for the same value of

e... Hence

1J
| o £1(844 £y(845)
00, )y = @8,), or - 2luL_ . ZEBLL g,
J £q (913) ,:f2 (913) '

Egs. (12) may be written

= 1, (p % 0By 4,8,0) = 0. (13)

BEq. (13) may be expanded in terms of the small corfeotions to the

coefficients of the helix, to give the linear set of equations.

E bfi. Ofii 0f, . afl.
+ _—lbp Op+ —l—é Tom Otan o +—Z'§ DB + ——-'103 OB + _160 OC =0
(14)

where the barred quantitiesbare the approximate coefficients of the

helix found in section 5.3. A is not found as only two of (ABC) may

9363
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be found. There is ah equation of tyﬁe (Eq. (14)) fd:éi every measure-
ment on the track on every view. These equations are solved by least -
squares for the five small quantities A?/,rand the standard errors and

covariances on those guantities,
The coefficients in the Eq. (14) are computed as follows:

fl(eij)//g and fz(eij)//e are computed as defined by Eqs-.. (11) divided
by ?/'0*'. Then

S . . | .
N (_eij)/,o - Sin 6, Cos - Cos @, ; Sin B - F s tan o (15a)

and

i

£, .(eij)/,o Cos 6, 5 Cos B- 8ine, Sinp- F i tana (‘.151)).

\

' Whence the various coefficients are (dropping the i and j for con=- .

venience):

A

Yz %= | [%1(6)//0+~;’3fo‘0 G - A}?’!‘/<f1*"(é)\/p)‘ g

N AOLIST MBI WVCROVS
. | Sl (163,)'
o t()afn a - EFX O] /(fl' (B)/p)-' EFY Q:I /(fz' (8)/p) | (l6b) 2

f'J_..

| %— ~ Sin p(Cos 6-1) - Sin @ COSH‘/(fl'(e)/p)

el

—

- |- sin g Sin @+ (Cos G-Z.L‘)'-C;)s:ﬂ /(2,7 (8)/p)
' o~ (;60)

A /e, (0)p) (e

9363
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Fy

. of
Py

- |- F;l fey @)p) = [ 7] Jia (@)p) (260)

%

The R.H.S, is

[f2<e)/p

If the track lies nearly parallel to the j-axis at the apex (in fact
if (B) <.075) thenAA is found instead of OHB.  Instead of Eg. (164)

there is

/(f2’(9)/p) - \fl(e)/ﬁ? /(fl,(e)/") o . (léf) |

e (E) - /(5,7 (8)/)

Before evaluating the coefficients of the Eq. (14) it is
better at once to find an improved value of Qij;to substitute in-
the Egs. (16) especially since nearly all the necessary programme
is there anyway. In fact the first time that the quantltles
fl(e), fz(e), '(e), £, ’(8) are evaluated -

_ fl“"('gi"j) '_ "'fz(éij)
£17(B13) £ (83)

Wl ’

6.. is put = B, . +
1J 1J

i.e. adding the mean of the Newton Corrections to © , for the two
equations (11), - f (9), 2(9), '(9); ’(9) are re-evaluated using

the new value of eij before evaluatlng the coefflclents of Egqs. (16).

The procedure is repeated with the new values of the co=-
efficients of whe*helix until the M's are sufficiently,smallﬁ In
practice it is difficult to find a good criterion for the sﬁfficienoy
of the convergence, and an upper limit is placed on the number of

iterations to save computer time.

50442 This is the general method for the flnal least squares fit
of thé helix. There are several possible ‘reasons why the techniques

may be varied slightly.
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5.4.2.1 In the case of a straight track the radius will already
have been fixed at several metres (see section 5.3.5). In this
case the procedure is exactly the same except that Apis not found,

nor, of course, the errors and covariances associated with it.:

5.4.2.,2 If the radius ip: becomes negative, or if quT? starts -
to increase, or if the value of the co-ordinate C of the apex strays
too far from the original, then the apex (ABC) is fixed and the
Egs. (14) are solved for &P, Atan o, AP only. :

, » If something still goes wrong the number of iterations is
limited to one so that at least the errors resulting from the least

squares minimization may be available. ‘ FRE

5.4.2.3 It is also possible that fl'(éij) or fz’(eij) may become
very small for some value or values of eij along the track. This
means physically that the tzngent to the track at this point is

practically parallel to one of the co-ordinate axes.

To avoid the‘numeriéél difficulty, a check is made and if

£,7(9) or £,7(8)< .05, Egs. (11) are replaced by

it
(@]

U}

Fi(8) = £;°(0) + £,7(6) (17a)

(17)

il
(@]

il

F,(e) £,7(8) - fz“(e)

effectively rotating the (xy) axis through 45°. It can be shown that
the Eqs. (16) remain the same with -
§ EERIOVS

(¢e,7200) - £,7%))

 l}1/(?i'(6)A?)A replaced by

and | 2f1'(e)’o
1A$2’(9)Ap) replaced by .
\(2,7%(8) - £,7%(a))
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This is of course equivalent simply to multiplying the
Egs. (14) by a weighting factor but it avoids giving too great a
weight to such an equation and also the inaccuracy caused by cancel-

lation.

5.4.3 The reason for dividing the £(8) by !'A' was that it was
originally intended to use &(%) instead of &p as the variable in

Eq. (14) and anyway it keeps the numbers small. It was found,
however, that this led to the null solution & = O, % = 0. This can
most easily be seen from Egs. (11). If either of these equations
is divided by 'p' there are terms only in (%) or (Cos ©-1) or Sin 6
so that € = 0O, % = 0, satisfy the equations. This is a pity since
é(l%-)) is preferable as a variable to &P because the errors onA(%)

are more likely to be symmetrical.

5.4.4 This leads to a discussion of the accuracy of the results
of the helix fit and the validity of the standard errors and co-
variances., The results of an analysis of the results of the recon-
struction of an artificial event are given in Appendix IV, The same
event was artificially created sixty times with different random
errors on the "measurements" each time and reconstructed by the
geometry programme, The analysis of the results shows that in

this case, at any rate, the results of the geomeitry programme are

"reliable and the standard errors are meaningful.

There seems little reason %o doubt that the technique gives
the best helix fit possible to the measurements and that it ié worth-
while making the least squares fit using all the measurements on all
the views. It is interesting to see what form the Eq. (13) takes
in the exﬁreme case of a fbadiview nemely a reconstrugtion line from

the camera being a tangent to the track in the xy plane,

Thus

=X . . cou(e+B) ‘ (18a)
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“and Eq. (13) becomes, on multiplying through by
- (sin( e + B) Cos(® + B)),
and after some reduction

Fy(A+ p (Cos @ - 1) Cos B - p Sin @ Sin p]

—

-FXLB+ o Sin @Cos B + p (Cos® - 1) Sin B

= (Fny - FXGy) . (18v)

Bq. (18b) is independent of tan o, and C and this is what we
should expect. There is no reason to suppose that this equation4
will have any tendency to produce an unwanted solution; there

is then no harm in including this 'bad' measurement even in this

extreme case.

However, the coefficients of tan « and C in Eq. (14)
are now zero or very small and this will undoubtedly lead to an

underéstim&te, of the variance

2

N -n

of Appendix III on which the errors are based, and this will

‘lead to an underestimate of the errors in some cases.
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5.5 When all the tracks have the best helices fitted to
them the tracks are arrangéd in alphabetic - numeric order and

the results output, as explained in chapter T.

5.6 The paragraph entitled "Variation of track from a
helix" in the first version of this report has been omitted here.
The general higher order curve fit in space was not successful.
The least squares fitting technique has, however, been worked
out for a particle of known mass in a magnetic field which
varies in the chamber, (DD/IEP/61/7).  Though this seems to

work it has not been used at CERN.

Preparation of Data -

Details of the labelling system for events and the
punching of data for titles are given in CERN 60 - 11. The
geometry programme requires other rules, which are not mentioned

there, to be observed.

6.1 Titles 1 and 2

In title 1 the list of miscellaneous data at the end
is now different. A typical title 1 would have the form shown
on page 29. If title 2 is not used in the curved tracks geometry
programme a dummy one only should be provided i.e. with opening

and terminating characters but nothing in between.
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The rules governing the punching of events as far as they
can be given are set out below. A point means a single point in
the bubble chamber measured with a label of type AA. A measurement

nmeans the XY co-ordinate pair punched automatically by the IEP.

At least four fiducial marks must be measured with each

event.

An event may consist of no tracks but must have at least

one point.

An isolated point, i.e. one not on any track, must, of

course, be measured on at least two views.

A track may be of the type Al or AB but not 12, and must

have measurements on at least two views,

‘The maximum angle through which a track can be measured

is 180 degrees, To be safe it should be less than about 150 degrees.

A track Al or AB may be measured without the apex AA being

measured at all separately, or AA may be measured on one view only.

A second point on a track like BB on the track AB cannot
be measured on one view only like the apex A. It need not be
measured; . but if it is measured it must be measured on at least two

views.

.If an event consists entifély of tracks the first require-
ment above, namely that an event to be computed must have at least
one point, may be met either by measuring an apex on one view only,
i.e. choosing one point at the beginning of a track on dne view and
calling that an apex A4 or by choosing some isolated point, e.g. a

fiducial mark, and measuring that on two views (or more) .



9363

- 22 -

If the number "maximumAmeasurable radius" in title 1 is
negative all tracks will be treated as straight, i.e. as having
this fixed large radius. In any case, if this number is positive
any track'having a label containing a letter whose position in
the alphabet exceeds or equals the number 'l! title 1 will be
similarly treated. For example, if 1= 22 any track which
includes V,W,X,Y or Z in its label, e.g. MW or WA will be treated
as straight. This facility is provided fof tracks which are too
short for their radii to be determinable.  Also, if in the first
approximation a track's radius exceeds the "maximum measurable

radius", it is henceforth treated as straight in the programme.

In measuring along a track the extreme points must be
the first and last measurements but in between any order may be

followed. Thus the track AB may be measured in the order shown.

No. of measurement 1 4 -5 3 2 9 8 T 6 10

A ' B

Fiducial marks are of two kinds - front and back glass.

Front glass fiducial marks are labelled 11,22,3%,44,66

Back glass fiducial marks are labelled 77,88,99,00

The number in the label refers to the order in which they are
given in title 1., ' Thus *he first front-gl~ss fiducial mark
given in title 1 has the label 11, and the first back-glass

fiducial mark the label 77 etc. They may, of course, be.

. measured in any order, provided they are labelled correctly.

The:folldwing table giveé ﬁﬁe;iimitations to be observed

when using the programne. .
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Min. No, - Max. No.
Cameras 2 4
Fiducial marks 4 6 front & 4 back
Points 1 ' 20
Tracks 0 24(1)
Measurements on each
track/view o 3 ‘ 47(2)
MeaSurement{pn.each - (2)
track on all views 6 96

NOTES : 1) Altnough theoretically 24 tracks are admissible it is
quite likely that Number Store will be exceeded especially if -

there are many measurements on each. An event has been computed

with 18 tracks on 3 views. Number Store in this casé was practically
filled: thus it is felt that this is about the practical limit, i.e.

the equivalent of about 18 tracks on 3 views,

2) If the total number of measurements is greater than this,
the programme reduces the number, removing measurements from the last

view(s).,

Some examples of short events are given below, * denotes
IEP measurement. The other symbols have the meaning given to them in
CERN 60 - 11 B

Examples of évents possible

31 100001, " +1 % 11 % 22 % AL * 33 % 44 *
+3 % 11 % 22 % AN * 3% % A4 % 0

*

31100002, W42 % 11 % 22 % 44 * 33 ¥ AA ¥ AL *ewkx

+3 % 11 * 22 * 33 % 44 ¥ AL XXXHER M
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31 100003, " 41 * 11 % 22 % UU % ALl *¥%X%%¥% 33 % [/ *
+2 % 11 * 22 % Al *¥¥¥xxx%x 33 44

44 %

*
*

*

31 100004, " 41 % 11 * 22 *

AA *'AB *RHKK 3% % A4 ¥
+2 % 11 ¥ 22 % AL ¥ AB *¥x%xx% 33 % AL *
+3 % 11 % 22 % AL ¥ AB ¥XXKKX¥X 33 ¥ 44 * M

31 100005, % +1 * 11 % 22 * AA * BB % AB *¥x¥¥% 33 % 44 *

+2 % 11 % 22 %
+3 % 11 * 22 *

¥ AB ¥EKXX¥ 33 % A4 *
* BB * AB *¥%%% 33 % A4 % O

<

Form of the Output
EVENT 123456 AEF. 1002 . ng nz
POINT .
- APEX A X DX Y AN 7 VAN

STOP . o

for all points.

(1) TRACK Al ng n,
(ii) P . tan a B sin’B cos B
(iii) ODp Atan o OB )
(iv) ¢ ¢ a ,  These numbers are in floatingpoimt—form.
12 13 23 v
(v) . ‘ ;M, 'fTTF ' emax /
(Vi) A A A ‘B . A B ¢ Ac

for all tracks in alphabetic—numeric order Al seees. ZY J

(If the track is of type AB then the track BA will aiso be given with

a slightly different weighting factor - heavier now at the end B,
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unless BB is not measured).

All lengths are in mm or cm depending on the units

employed in title 1. Angles are in radians.

T.1 Meanlng of numbers in the output

e e s e e 3 Ot O k t t e e s e B S S S

T.1.1 For_:@g_w?ole event -

Event and ref. no. are self explanatory. ny is the
number of points, n, is the number of tracks. There is a short
length of blank tape (six figure shift characters) after each event

toseparate events or the tape.

If the eveht fails during the géometry programme, no
results will be printed but "FAULT 13 (Al,2)" for example.  The

explanation of the fault numbers is on pdge 28.

T.%X.2 For cach point

- 0 .o

A POINT means an isolated point, i.e. not occurring as the

end of ény’trackg

An APEX means a point which occurs af the end of at least

two tracks,

STOP means a point which appears at the end of only one

track.

(XY2Z) aré:the co-crdinates in the chamber and QQXAYAZ)
their errors, If an APEX or STOP has not been measured'separately
it does not occur here. If an APEX or STOP at the beginning of a
track has been measured on one view only it occurs here, but all the.

co-ordinates and errors are zero.

7.1.3 TFor each track

n3 and'n4 are small integers showing the number of iterations

in different loops.
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p, tan «, B given in line (ii) together with 4,04, B, DB, c, Do
the co-ordinates of the "apex" and errors given in line (vi) define
the helical track (sece Fig. (iv)). '

The heiix is of the fornm

x’ = p(Cos 6-1) .
y' = 2 sin € (1)
z/ = p O tan o

where the (x'y’z’) axis system is the original (xyz) axis systenm
rotated through an angle B about the z axis and moved to a new
origin (ABC).

In simpler terms, @ is the radius projected on the XY plane,
I o is the dip angle and B % g the agzimuth, where the sign ambiguity
is resolved by consideration of the direction of curvature given by
the sign of © , the last number in line (v). The number ©
mnax max
gives the value of 6 corresponding to the measurement furthest from
the apex; it is positive if the rotation is anti-clockwise away from

the apex, negative if clockwise in the usual convention,

dip angle of = + o, azimuth § = B +

%3

max

] ST Y

If © -ve ; dip angle o = - a, azimuth § = -

it
4

Thus the direction cosines of the tangent at the apex with positive

sense away from the apex are given by

A

m

Cos # « Cos of
sin ¢ . Cos a’

Sin of .

n

The other lines of the results are

line (iii)  The errors on p, tan a, B

line (iv) The covariances Cgo’ taﬁ «) C(paﬁ) C(tan a, B)
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line (v) The last number is the maximum value of 8, found on

any view,

line (vi) It has already been explained that these 8ix numbers are
' the co-ordinates of the "apex" and their errors. The
usual teehnique in the pfogramme is to find the value of
the x co-ordinate and find only the y and the z cow
6rdinate by an iterative least Squares process along with
Ps tan a, B. This can be seen in that AA =0, but
AB and AC ;40. However, if the track is neai‘ly parallel
to the y-axis at the apex then the y co-ordinate is.
fixed. If this happens AB=0, but AL and AC 40, If
the iterative process used does not converge (ABC) are
fixed and the computer tries again finding only @,
tan «, B. . If this happens AA=AB=AC = 0. If, in
' addltlon,‘n4_ 0 it means that it has not even then cone
verged and only one ‘iteration has been made.  The results
in this case are suspectd

 The co-ordinates (B¢) (or AC) found on the track, should,
of eourse, not differ greatly from the corresponding coeordinates
given for that apex at the beginning of the results. If the apex is
not measured separately, of course, the values (ABC) form the only
estimate of its co-ordinates,

'7 2 leferent form of the output for straight traeks

-

- T . — . . S S

'The differences are as follows
line (ii) P == (py, x 10)
line (iii) Ap= 0
line (iv) C(p‘ban a) = C(FB) =0

line (v) All the numbers are zero or nearly so.
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GEOMETRY PROGRAMME FAULTS

FAULT NUMBER.: . 'MEANING - @ . ° VARIABLES

1 Not enough fiducial mark measurements (View No.)

2 Error on fiducial mark measurcments (View No.)

3 Not enough measurements for point ‘ ' (Point)

4 . Point measurements but no fldu01a1

marks given N T C o - (View No.)
5 No canmera co-ordinates given . - (View No.)
6 More than 47 points on line on -one view * - (Line, view
ﬁ - No. of pts.)

7 ‘More than 96 points on line on all views ¥ .(Line, No. of pts.)

8 Not enough views for line o (Line)

9 ‘Not enough measurements on line per view ~ (Line, view)
10 ' Bad neasurenent on apex on one view (Point, view)
11 ~ More thun one bad measurement on line e

. per view " (Line, view)
12 . Tot enoumgh'good "pts. left on line after 1~
_ . bad measurement. . . . (Line, view)
13 ~First or last measurement on llne not at
' " end . (Line, view)
14 First approx. gives trouble even after
corr. pts. (Line)
15 Line measurements glven but ‘no fldu01a1
 marks : . - . . (view)
16 Cannot find any approx., corr. pts. " (Line)
17 - 'Error on apex too large . : (Point)
18 Too many or too few points S - (No, of points)

19 Too many tracks (No. of tracks)

% When this fault number is printed the programme continues

after reducing the number of measurements,
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A typical title 1 and 2

1!

12015,

1,

+1.,093%,

+1.517,

+80.0,

3,

+67.9, =152.2, +77.3,
+128,6, -9.5, -131.1,
+1128,0, +1128.0, +1128.0,
4, |

+100.8, +0.1, -99.2, -45.1,
+0,68, -99.87, +0.53, -40.2,
0,

5y
+2.0,

+50,0,
+20.0,
+100000.0,

+22,

21

"
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Title

Title

1

Warning characters

Reference Number

umber of nedia (one front glass)
Liquid refractive index

Gless refractive index

Glass thickness

Number of cameras

x co-ordinates of cameras 1, 2, 3

¥ cu-ordinates of cameras 1, 2, 3

z co-ordinates of cameras 1, 2, 3
Number of front fiducial marks

x co~ordinates of front marks 1,2,3,4
y co-ordinates of front marks 1,2,3,4

Number of back fiducials (zero,
therefore no co-ordinates follow)

Number of constants

Allowable tolerance on fiducial
nark measurements °

Allowable “olerance on photograph
measurenents (in digitiser fringes

Perricsible error cum (Ax +Ay +Az)
on an aper

Maximun calculable radius of

curvature (p __)
Maax

No. of letter in alphabet (ﬁﬁ
Tracke having a letter in their
label beyond the ﬂFth are com.-
puied so straight, e.g. in this
case AV.

Terninating character
2

Warning characters

Terminating character

Co-ordinates may be in cms or mms but must be consistent.
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APPENDIX I

Derivation of reconstruction line where there are several

thicknesses of materials of different refractive index.

xﬂ;fj, Q)Y
(y j()(‘f’) o 1,4)" »
v| —~ o ' v
S-l S(m Sl S - e o PQ
e B AR s

Fig. (iii) Section through a light ray and optical axis.

X’Y are the co-ordinates measured as apparently reproduced
to the back of the front glass, (PQR) the co-ordinates of the camera

lens

Jx2)? + (5-0)% = S -R)® ¢ (v-@)® + 7Th by tan By gy

-§i3 tan a - z tan B(n-l)

Now tan a = /QX'-P)Z + (Y'—Q)z
. R

SinB.

/& Sln B

Sin a

e

1+k

(1.1)

and tan B
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This gives a computational sequence since a, = B(i l)’ and

tan o = [z -p)? + (v7-0)° (1.2)
° R

", the equation of the reconstruction line becomes, (since

(x=P) ___ _ (X-B) ),
()7 + (-0 J(x'-p)?

- +5':1;-l§1 tan B(i—l){ £ DU } - Xl (1.3)
o . X'-P)° + (Y -Q)° {
and similarly
y = Q=Y tan B Z-+Q%Zj§&p
_ —ﬂ———g—~————“g— , Y A
\/( {’ (Y2Q) R-/-
2?'151 ban By 1) vi_g _ + Y (I.4)
P (x'-P)° + (¥'-Q)°7)

and the iteration is as above - equations (1.1 =znu (1.2).
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We may write (I.3) and (I.4) as

X = (P-X)P:} + (P-X)) + X’
y = (@-0)E) + (e-0)f + Y
tan B ‘En-l 8 tan B
where € - (n-1) , j I R N (i-1)
J(x22)7 + (v'-0)° R e s (o)

Apparent fiducial marks

If f,g are the real, measured co-ordinates of a fiducial
mark on the back of the front glass and Ff, G’are the apparent co-ordi-

nates on the back of the front glass

From (I.3)

, n-1 ,
R s oy

L/(F’-‘P)z + (67-)°

g = Q:gi)gg . ﬁén-l . tan B ; N (Gf-Q)
: (R it o (i-1) VE -P) + (67-Q)°

tan. B (g-g) =

V(£-P)% + (g-0)°

+ G+

where, except for back fiducial marks, z = O.
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Ignoring the fact that F' + G’ are involved in a complicated fashion

in tan B(i-l) etc., this gives a linear equation in F’ + G'respectively.

F'(l_‘%i) -Z 17y ten P(1-1) /(w_;;;+ (6-9)° - gEs v f " (1ms)

N ' ( ' ' *
G'(l_,%;) =57 15:'1. tan B(i-l) Z Q-8 i_ %égl + g 2 (11.6)

J(2-2)% + (6-0)°

f and g provide sufficiently good approximations to F’ and G" to give the

initial values for an iteration

p 2 ’ 2
tan o = VQ% -P)” + (67-Q) % etc.
R

For]back fiducial marks there is an additional term:

*

) | . (P-£) tan g(n_l? n
J(£-2)7 + (8-0)°

: h

*2) N RTC

Y(£-2)° + (g—QW

where h 1is thet}-co—ordinate of.the fiducial mark.
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APPENDIX TIT

Approximate method of near corresponding points.

This is used to establish values of zy for the measure-
ments on the pivotal view when the iteration of section 5.3 breaks
down, These pivotal view z; values are then the definitive ones
which are used to give values of Xi9 ¥y to substitute in Eq. (5).
The whole procedure of section 5.3 is then gone thrcugh - but only

once.

The near corresponding points method is also used to give

the co-ordinates (x y z) of an apex if measurements of an apex point

~ AA (say) are not given on two views (see section 5.2,1).  The pro=

9363

blem is:
Given (x'y") defining F 7, GXI,FyI, GyI in the reconstruction
line equations
X:FIZ'I'GI
ps X
N S (I1.1)
¥y ¥
to find by interpolation in all’ the values of F .II, G .II, F .II,
II 11, 11 *torr Ut
G_. on another view a set of values F y G, B s G such that
yi s X y y
the line
x=F IIz + G I
X X
(11.2)
y=F IIZ + G I
y ¥

intersects the line Eq. (II.1l) in space.
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I and II do not ﬁécessarily mean views I and 2 but are

symbols used to distinguish the two views chosen,

Linear interpolation is in fact used in the programme as

this process is used only for an approximation,

The condition that Eqs. (II.1 or II.2) intersect is that

the determinant

: I II I II
II‘ IT _ II ., II <FX " Fx ) (Fy "y )
¢(FX ’GX ,Fy 9Gy ) = : =.0.
1 II LI II
(6 = &) (uy - Gy )
(11.3)

The function @ is evaluated for all the measurements on view II, in
succession until there is a change of sign between two successive
measurements i, i + 1 . As stated above a linear variation of the

F's and G's Dbetween the two measurements is assumed.

. 1I 11 - 1T
Thus the required F =~ = (1-0) P, +)“in+1 and similarly
11 II 11

for G, P, Gy where 0¢ A £1.

¥y A
Hence Eq. (II.3) may be written
g (A) =0 0¢Agl.

If A lies between ) and A a better value of N is given by
0 1 .

>\0¢(>\1) - >\l¢(>\o>
Mo = TN T Bng)

(II.4)

If A, = O, and Ay =1 initially then the value of ), found from Eq. (11.4)
takes the place of AO or Al for the next approximation depending on
whether @(A) has the same sign as ¢(XO) or ¢(%i) and so on. Having
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found N, ¥ 1T, ¢ T g 1L
pd b'd ¥y

9 GyII are easily calculated and hence from
Egs. (II.1 and II.2)

(GXI_ GXII) @ T_¢ 1T

Z = - = = L L ° (II.S)
I II I II
(P, -F.7) (Fy -Fy )

X

It has been found that one of the fractions in Eq.(II.5) can take the

form (%). This can happen entirely due to choice of co=-ordinate
axis. In this case z is taken as the value of the other fraction of
Eq. (II.5).

Extfapolétion has been uséd at ends of the track on view II

if necessary.
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© APPENDIX IIT

Solution of simultaneous linegr equations by least squares

It happens frequently in the geometry programne that it

is necessary to solve a set of linear simultaneous equations in aj.

alfl(xi)+ azfz(xi)c+.,.g+anfn(xi)- y; =0, i-= 1(1)N
(111.1)

where N > n and the f(x ) and y; are given. It may also

be requlred to find the standard errors and covariances on the aJ.

The method used and the assumptions made will be given

briefly without proof.

Let the (N x n) matrix of fj(xi) be called F
(N x 1) vector of y; be called y

(n x 1) vector of 2y be called a .
Then it is well known that the condition

2

2 .
2 f(xi)- yi) = minimum

'.‘; “\

is given (on partial differentiation w.r.t the 2y in turn) by

[F’FJ a = Py . (I11.2)

This is a symmetrical set of n simultaneous linear equations

in n unknowns which can be solved for the a. .

-1
a = [F'FJ . Py (I1I.22a)
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Further if Y, is defined by Y, = % a.f, (x ) Where the a, are found
from Eq. (III 2a), and if an element of ‘? ?l is called Crs then

the variance of a. is

and the covariance

N2
Loy - %)

No account has been taken in this simple theory of any original known

measurement errors on the X, o
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APPENDIX IV

Results of error analysis

B As stated in section 5.4.4 the same artificial event was
punched on tape 57 times with different "measuremeﬁt errors'" every
time; the 57 events thus created were computed.by the geometry
progranmne and the results analysed by an "analysis programme',
Both of these programmes (for the artificial creation of the events:

and for the analysis) are by R. B&ck.

A sample result from the geometry pfogramme isi

EVENT 380091 REF. 1000 1 3
APEX E -0.4972 0.0038 -4.7663 0.0039 =2.4325 0.0311 .

TRACK E1 . 8 1 : : :
66.50 -0.00769 1.20790 0.93487 0.35498
5.5446, -1 2.0680, -3 7.6743, =4
6.1234, =5 4.1210, =4  -3.2564, -8 .
-0.Q01 0,001 . . .0.000 0,000 0.16117
-0.49718 0.00000 =4.76711 0.,00216- " =2,44211 0:01515

TRACK E2 41
53,23 0.84566  -1,29861 - 0.96319-- - -0.26884 -
1.7029, -1  1.2023, -3  3.9013, -4
3.5045, -5 =6.2992, -5 -1.5836, =T
0.00C 0.000 0.000 0.000  -0.25006
~0.48718 0.00000 -4.76816  0.00117  -2.44493  0.00809

TRACK E3 6 2
8.40  -2.19818  1,00998  0.84682 0.53187
5,1461, -1  1.9%11, =2 5,1617, -3
2.5989, -4 -2.5722, -3 -7.2193, -6
0,003 -0.003 0.001 0.000  =0.16566
-0.49718 0,00000 -4.76874  0.00184 =2.43902 0.01492

The "true" results are given in the first column of the next table

which shows the error analysis.
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Using the results of 57 artificial events

Actual Mean Brror of Mean* Mean of Erron

A - 4971 ~0.496726 0.001946 0,002080.

C =4.7692 -4,769458 0.002184 0.002168

c -2.4214 -2.421795 0.016230 0.017080

P 66.58 66.6%9123% 0.447850 0.635228
tandt -~ .12003 -0,119721 0.002782 0.002387
B 1,20778 1.207844 0.,00625 0.000882

Va 53,16 53.159824 0,229159 0.250010

tan ol . 84490 0.844390 0.002148 0,001770
B 1,29873 1.298783 0,000582 0.000609

y: 8.64 8.676491 0.615192 0.568210
tano{  =2.20041 -2.198344 0,020870 0,020749
B 1.00625 1.,006148 0.005555 © 0.005531

*

Square root of vériance of the computed quantitiés abput the mean.
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INPuT GEOCMETRY
______{ S -
READ T17E 4 = Sar wp

L =) REFER ENE

[ =< FRAME,
{Reap TiTLE 2 ) o

‘ / | -

I e— N - 1 COMPUTE
JREAD TITLE 3 ) __ | -
r\ﬁv:f,;« ZVENT / = | EVEnT

Fig. (i) Connections between input and geometry programmes.
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One track is shown

and
a typical reconstruction line from each of two views inter-
secting it.



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

